Products
|
|||||||||||||||||||||
课程主要内容 空格“线性代数”是一门重要的公共基础课程,是为培养各种管理有关的人才而设置的。线性代数是讨论有限维空间的线性理论的一门科学,为处理线性问题提供了有力的工具。在当今科学技术飞速发展,特别是计算机科学和信息技术的应用日新月异,科学管理理念日益加强的时代,作为描述和研究实际问题的有力工具,线性代数的理论和方法已渗透到各个科学领域以及管理科学,在工程技术和国民经济的许多领域都有广泛的应用。学习本课程,不仅使自学者掌握本课程的基本理论和方法,为学习考试计划中的多门后继课程提供必要的基础知识,而且有利于提高自学者的数学修养,养成善于抽象思维和逻辑推理习惯,从而能提高自学者分析和解决实际问题的能力。 教学目的 空格理解行列式的性质,会计算行列式;熟悉掌握矩阵的各种运算;会判别向量组的线性相关性与线性无关性,理解向量组秩和矩阵的秩的概念及其关系;掌握线性方程组的解的结构和线性方程组的求解方法;会求实方阵的特征值和特征向量,理解方阵可对角化的条件,掌握方阵对角化的计算方法;了解实二次型及其标准形的概念和正定二次型的概念及判别方法。 学习要求 空格了解行列式的定义;理解行列式的性质;熟练掌握二阶与三阶行列式的计算,会用性质计算比较简单的低阶行列式,会计算简单的n阶行列式;掌握克拉默法则。掌握矩阵的各种运算及其运算法则;知道方阵可逆的充分必要条件;会求可逆矩阵的逆矩阵;熟练掌握矩阵的初等变换;理解矩阵的秩的定义,会求矩阵的秩。知道n维向量的概念;掌握向量是同维数向量组的线性组合的概念和组合系数的求法;理解向量组线性相关与线性无关的定义和判别法;理解向量组的极大无关组的定义和向量组的秩的定义;会求向量组的极大无关组和向量组的秩;清楚向量组的秩与矩阵的秩之间的关系。知道向量空间Rn的定义和向量空间的基与维数和坐标的概念。熟练掌握齐次线性方程组的解空间、基础解系和通解的含义与求法;熟练掌握非齐次线性方程组的有解判别法和通解的方法。熟练掌握实方阵的特征值和特征向量的定义与求法;了解特征值与特征向量的性质;清楚两个方阵相似的定义和性质;理解方阵与对角矩阵相似的条件并会用相似变换化方阵为对角矩阵;会计算两个实向量的内积和向量的长度,会判定两个向量是否正交;了解正交向量组的定义;会用施密特方法把线性无关向量组化为等价的正交单位向量组;了解正交矩阵的定义、性质及其判定方法;了解实对称矩阵的特征值和特征向量的性质;会用正交矩阵化实对称矩阵为对角矩阵。理解实二次型的定义及其矩阵表示;了解实二次型的标准形;了解合同矩阵的概念;会用正交变换化二次型为标准形;了解用配方法化二次型为合同标准形;知道惯性定理;理解正定二次型和正定矩阵的定义。掌握正定二次型和正定矩阵的判别方法。 课程内容与课时分配
教学方式 空格以课堂教学为主。 |
|||||||||||||||||||||
|